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DIFFUSION SPREADING OF LOCALIZED HYDRODYNAMIC DISTURBANCES 
ACTION OF RANDOM FORCES* 

V.A. GORODTSOV 

The effect of a time-dependent random force on fluid flow may be 

UNDER THE 

found 
by changing to a non-inertial coordinate system. It is shown that, 
under the action of a Gaussian random force, initially localized dis- 
turbances undergo spreading of a diffusion type. Explicit analytic 
solutions are given for the interior wave soliton under the action of a 
random force. It is shown that, in the presence of a soliton, the growth 
of velocity pulsing may either increase or moderate. 

1. The evolution of a wide class of one-dimensional disturbances of the velocity field 
of the flow u(z,t) in hydrodynamics is described by the general non-linear equation /l/ 

When there are no external force (f = 0) the Cauchy problem for the homogeneous equation 
can sometimes be solved by means of reduction to a linear problem, and as a result of the 
balance of non-linearity, dispersion, and dissipation, the existence of selfpreserving non- 
linear fields (solitons and shock waves) is possible. In particular, when F (2) = -@ (r), 
we obtain Burgers' equation, which, under the Hopf-Cole replacement, reduces to the linear 
equation of diffusion. For 

F(z)--@(r), P$ qctgg - sgnz) 

the equations are respectively, completely integrable Korteweg- de Vries equations, Benjamin- 
On0 equations, and the equations of the interior waves in a basin of finite depth (the symbol 
P indicates that the singular integrals are to be taken in the sense of the principal value). 
The reducibility to a linear problem in these cases is also well-known /2/. 

With regard to the non-uniform Eq.(l.l), by using the equivalence of the action of the 
spatially homogeneous force f(t) and of a suitable acceleration of the coordinate system, the 
soltuion of (1.1) for u(2.t) can be reduced by the change of variables 

l Prikl.Matem.Mekhan.,52,2,211-217,1988 
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f - 51) (t) = 5, u (z, t) - UC (t) = u (5, 1) 

ax,iat = Up, au,iat = f (t) 
,(1.2) 

to the solution of exactly the same uniform equation for v(& t) (the solution of the uniform 
equation will henceforth be denoted by the letter v to distinguish it from the solution u of 
the non-uniform equation). 

By using the known solutions of the uniform equation and the above change of variables, 
we can estimate the influence of the external forces. Under the action of the determinate 
external force f(t) a uniform "background" flow u@(t) = ldtf and a variable motion of the 
"centre of gravity" of the solution of the uniform equation x,,(t)= Sdtu, are induced. In 
particular, in the case of an oscillating external force, both the background and the centre 
of gravity oscillate. Under the action of a random force, fluctuations of both of these arise. 

We shall first confine ourselves to the mean flow caused by a Gaussian random force with 
zero mean value <f> = 0. In accordance with transformation (1.2), we have 

(U(Z,t))=(v(:z - Io(t),t))= <exp(- zro(jl) &u(.r, t, = (4.3) 

exp (7aya22) v (2, t), T s (so2 (t))/2 

The last important equation is proved by series expansion of the exponential function, 
followed by term by term averaging, and reverse transformation of the result into an exponen- 
tial function. Since the random force is Gaussian, all the odd moments vanish, while the even 
moments reduce to integral powers of the second moment. 

The operator relation (1.3) can also be written as a Fourier expansion or integral con- 
volution: 

1- 
<u(r, t)> =r;- Ln s 

dkv (k, t) exp (- k*T + ikx) = 
-Ca 

1 dygfy- X,t)v(y.t), gf%t)=(4nr)-" erp(- f) 
-Cc 

If we now pose the question of the influence of a Gaussian random force on non-linear 
waves of soliton type (or shock-wave type), which propagate in the absence of forces without 
a change of shape V(x - et}, then we obtain from (1.3) : 

(u (5, t)) = exp (zCP/o^q*)V (n), n = t - ct (1.5) 

i.e., under the action of random forces these waves must undergo a diffusion type of smearing: 

(1.6) 

At long times, when r is large and the main contribution to the Fourier expansion is 
from small k, we obtain from (1.4) the simplified relation 

<u (r, t)> = u (k = 0, t)g (x, t), t + co (1.7) 

which is suitable when the asymptotic stage is reached and the diffusion width -'c'~s becomes 
much greater than the initial width of the disturbance. 

For random forces of the "white noise" type we have 

<f (&)f NJ> = f,V (tl - tA ‘F = ‘/*<.zo2 0 11 = ‘~,fo2ts V.8) 

and at the remote stage of soliton smearing (t-+ a3) its width (in the mean) increases as 
$11 _ ri., whereas its height decreases as Z-'f*- +*I*. The averaged "soliton area" then 
remains constant in time: 

Y dz(u(z,t))=V (k=O) (W 
-m 

which is*the result of the initial Eq.ll.1) with <f> =O. 
An example of a completely integrable uniform equation of type (1.1) is the interior wave 

equation /2/ 

~~+w,+~~~[cth~-sgn(~-~)]v~E(r;,t)=O 

which has a solution of the soliton type (with O<xh<n) 

(1.10) 

(1.11) 
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2(‘++) 5 dk~exp(~k~) 
--oo 

The smearing of this soliton when random forces come into action (at the instant t = 0) 
is given by a Fourier expansion of type (1.4): 

<~(ZJ)>=2[~++) 5 dk-$$exp(-kk’T+ikq) 
--m 

(1.12) 

At long times (T+ cc) the soliton height, given by <a> with n = 0, is 
hf(nz)-'~~. 

2%fl i- 
Since the soliton area is constant: V (k = 0) =4x(1 -t-k), its width (the ratio of 

the area to the height) will increase as 2 (nqw 
In the "shallow water" limit (h-t O,xk-+O) the free soliton of interior waves (1.11) 

takes the classical form 
vu, + liyv_ = 0. 

xelcha (~$2) and satisfies the Korteweg - de Vries equation u, -I- 
The behaviour of this soliton in a field of random force is analysed in /3/, 

where the solution was given in the form (1.12) with k instead of (1 + l/k)shkk. 
In the "deep water" limit (k+oo,%-tO,xh = n - x/c) the free soliton satisfies the 

Benjamin-On0 equation and has the Lorentz form 

(1.13) 

Gaussian white 
(1 + l/k)sh kk/sh ka%-l 
error function: 

noise leads to smearing of the soliton, which is described by (1.12) with 
replaced by exp(-_I k //cf. The result can be written in terms of the 

<U (2, t)> = (n/r)"* exp t* erfc c + c.c., 25z’/: s Iq + l/c (1.14) 

4%. 
For the height, width and area of the soliton we have respectively 2 (ii/r)"*, 2 (m)x and 

With regard to the interaction of several solitons, it is well-known /l, 2/ that, after 
a long time, the solution of the problem is close to the sum of the free solitons in uniform 
motion. Under the action of random forces, at long times t, the widening of the solitons 
(4%j is at a faster rate than their "pick-up" (-t), and at the remote stage of evolution 
all the solitons "merge" into a single weak disturbance /4/. 

2. The above analysis can be extended directly to the multidimensional case. For 
instance, the three-dimensional inhomogeneous Navier-Stokes equations, describing the flow 
of a homogeneous incompressible fluid (of density P = 0, under the action of forces f (t) 
can be reduced by the change of variables (compare with (1.2)) 

51 - 210 (f) = E.19 ui (x7 t) - UfO (t) = VI (6, t) 

a.%&% = UJO, au&a = f* (t) 

to the same uniform equations for vt(&d). 
Hence we find, in just the same way as in the uniform case, that 

<ul (x, t)> = <vr (x - x0 (0, t)> = exp tzA)vi (x, t) = 

(2~)~~ j dgkv, (k, 1) exp (-k*s -f- iltx) 
(2.1) 

if the random vector force function is assumed to be Gaussian and isotropic. The effect of 
the random forces on the mean flow is here via a single scalar characteristic Z, in terms 
of which the correlation (x~,,(t)s,o(t)> = 2r6fl is expressed. 

E'rom (2.1) as z-+00 we have the simple asymptotic estimate (compare with (1.7)) 

<u( (x, t)> =: (4nS)+* i+ (k = 0, ,t)exp [-x*/(42)1 

In the three-dimensional case also, therefore, the effect of a Gaussian time-dependent 
random force amounts to diffusion broadening of the initially localized disturbances. Under 
the action of intense white noise the diffusion smearing of a disturbance which has earlier 
retained its form, occurs in the same way as in the one-dimensional case (-fA), while the 
amplitude falls more rapidly as a result of geometric divergence (--t-'/*). Then, the integral 

1 &r<u(x, t)> = Y (k = 0) 

does not vary with time. 

3. We will now consider the higher moments of the field of flows caused by a random 
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force when there is an initial disturbance V. We shall confine ourselves to the one-dimen- 
sional model (1.1). By (1.21, the velocity ~(x, t) of such flows is the sum au(t) + v (x - 

x0 (% t) with random functions ull (t)? x0 (4 and the regular solution v(x,t) of the uniform 
equation of type (1.1). Thus evaluation of the moments of the velocity field u(x, f) reduces 
to finding the correlations of the "background" uO(t) and the function v of the random 
variables x0 (9: 

<II IL C5i7 fi)> G(II %i> + <%I II V (xi - xoil fi)) f 
i 

. . + (ITV(.rj _iOi, fi)) 
if1 

i 

@.I) 

Here and below, we use the abbreviated notation z,(t,)=xa~, Ug (ti) Z ZLoi. 
Writing the function v(x -x0(t), t) as the product of the random shift operator exp (- 

x" (t)alax) and the regular function v (x, t), we find that 

(3.2) 

if we use the generalization of (1.3) for an arbitrary Gaussian random field x (4 (si z a tti)) 
and parameters ai which may be numbers of operators alas, 

For simultaneous correlations (with t, = . . . = t, = 1), from (3.2) we have 

(~v(l,-x~(t),t)>=exp(t~)IIv(~,,t) 
i i 

7 = + (xo2 @)>, 2=+ 5* 
z 

i 

(3.3) 

(3.4) 

so that these correlations satisfy the same diffusion Eq.(1.6) as the mean velocity <u(x,t))= 
<v (x - 50 (% 9. 

For simultaneous correlations at the same point of space (x1 = . . . =x, = z) we have 

<v"(x - x0 (t), t)) = exp (@/8xe)vn (x, t) = g * v" sm (3.5) 

s dyg (5 - Y, z)v” (Y, 0, g (I, T) = exp (z@1b@)6 (5) 

Consequently, the problem of the one-point simultaneous moments <v"> of the field of 
flows due to a Gaussian random force (switched on at f = 0) and an initially stationarily 
moving disturbance P(x - ct), amounts to solving the simple initial value problem 

with 

<v”) Ir=o = vn (q) (3.6) 

With n = i we have the result of Sect.1. 
To find the correlation functions of the field u (2. 0, we have to find in accordance 
(3.1) the correlation also between the background uo(t) and v(x -x0(t), 1). 
For this, we can use the corollary of (3.3): 

these relations being obtained by differentiation of (3.3) with respect to certain parameters 
0~1, which are then equated to zero. 

Using (3.7), we can obtain e.g., 

a 
<cc0 @I) a (2 - %@a), Q> = - <uo(Q zo (I,)> x <U (z,t*)j (3.8) 

All in all, the correlation functions of the velocity field u&t) are expressed in 
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terms of the second moments of the random functions uo(t),zo(t), which are in turn expressible 
in terms of the correlation function of the Gaussian random force cf(tl)f(fr)). In the case of a 
delta correlated force of the type (1.8) we have 

and in particular, for the simultaneous correlations <u,' (f)) = Qt. <u, @).?* (t), ='lj&', 2% EC &I* (I)> = 
v&y. 

For the velocity variance <u'r (5, t)) = (IL*) - (u)", we can write, in 

(U")=(U~)-2(110~~)~g*V+g*v4-(g*U)2 

g*cpESdyg(~,-y,T)(p(ytt)=exP~~)'P(2,t) 

It is easy to estimate in the case of short times (from the instant 
random force). Using series expansion in z, in the case of an initially 
regular disturbance V(q), we find that 

<u'r> = <ulJ*> - 2<%.%>dV(rlWl + <%r>(av(llYW2 + 0 (z) 

Since a shape with one vertex is typical for a soliton, ahead of it 

view of the above: 

(3.10) 

of switching on the 
stationarily moving 

(where avia? -c 0) 
at short times the mean square velocity pulsations will increase more rapidly, and behind it 
(where BVl8q >0) their increase will slow down due to the presence of the soliton. 

To make the estimates for long times (r-+00) it is better to use series expansions, 
not of the initial quantities V(q), but of their Fourier images V (k) (see (1.4), (1.7)). 

Assuming that, for a symmetric soliton solution, V(k) is series-expanded in the 
neighbourhood of k = 0 (the expansion is then, by the symmetry, in even powers of k*), we 
find that (H, are Hermite polynomials) 

(3.11) 

By the usual definition of 
tion t exp (rt)l(exp t - 1) , we have 

Bernoulli polynomials B,(z) in terms of the generating func- 

which can be used to find the coefficients of the expansion about k=O of the Fourier image 
of the soliton of internal waves (1.11) 

v(*) = hn pm ( 9&y2T)p”E2,+l(~) 

For the soliton there follows in particular from this the Korteweg- de Vries equation 
(as h-0) 

(3.12). 

Substitution of (3.12) into (3.11) gives a relation which is the same, apart from dif- 
ferences in notation, as relation (~.6) of /3/. 

The Fourier transform of the soliton of the Benjamin-On0 equation V(k) = 4s exp (- 1 k I/c) 

does not depend analytically on the wave number, but after its expansion into terms V (k) = 

4nch (k/c)+ 4n sgnksh(-k/c), we. can again obtain here an expansion (3.11) with Vtnm) replaced 

by 4nc- with supplementary terms written symbolically in the form 

t(ykn (C-g-) [exp (-$) erq$)] 

The same result can be obtained from (1.14). 
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In view of the complete analogy of representations (3.5), (3.6) for the mean velocity 
and the moments <u">, similar expansions can be written for the latter. Assuming that the 
Fourier images V"(q) behave 
to the principal terms of the 

analytically with small wave numbers, and confining ourselves 
asymptotic form, we have at long times 

<u> = c,g (rl, Z)? <v2> = c,g (% T), . . ’ 
C, = j drlV Cd, C, = s dqV2 (rl), . . . 

For the soliton of internal waves (l.ll), 

c, = 4xh (1 + l/h), c, = 8x (1 +.l/h)yl - xh ctg xh) 

Using the relations along with (3.10), we can assert that, to a first approximation, we 
have the estimate for the velocity variance (which also remains valid for the soliton of the 
Benjamin-On0 equation) 

<U'")Z (uo2> + <v2>, t-t 00 

which shows that, at long times, the velocity pulsations are somewhat greater in the domain 
occupied by the soliton. 

Thus, in the case of Brownian motion of the soliton, it undergoes diffusion smearing and 
canincreasethe pulsation motions of the surrounding fluid. At earlier stages, however, the 
effect of the presence of the soliton on the random disturbances is more considerable and 
more complex. For instance, immediately after switching on the random force, the disturbances 
increase more rapidly in front of the travelling soliton and more slowly behind it. 
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THE PHENOMENA OF TURBULENT TRANSPORT AND THE RENORMALIZATION-GROUP METHOD* 

E.V. TEODOROVICH 

The renormalization-group (RG) method is used to study the transportof ascalarpassive 
impurity by turbulent velocity pulses. A solution is obtained for the turbulent Prandtl 
numbers, which, in the case of large-scale long-term,processes (the infrared limit) tends 
to a universal constant, which depends only on the dimensionality of the space. The version 
of the RG method employed enables the behaviour. of the diffusion coefficient and of the 
Prandtl number to be found on approaching the asymptotic mode, and for it to be shown that 
asymptotic RG methods can be used to describe the development of turbulence in the inertial 
interval of the spectrum (IIS) of wave numbers. 

The ideas of the RG method made their first appearance in quantum field theory /l, 2/, 
and have been widely used in other fields of physics. The achievements of the method are 
specially clear in the theory of critical effects, the laws of which are determined by the 
large-scale and long-term fluctuations of the order parameter. In accordance with this, the 
RG technique has been developed as an asymptotic approach in which the ideas about the fixed 
points of the RG transformation are used and the scale similitude exponents (critical indices) 
are found by studying the RG transformation operator, linearized near to the fixed points /3, 
4/. A similar procedure has been stated, both in the context of Wilson's approach with 
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